
c

Journal of Magnetic Resonance146,245–246 (2000)
doi:10.1006/jmre.2000.2156, available online at http://www.idealibrary.com on
A Simple Method to Increase the Spectral Window
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In Fourier-transform NMR spectroscopy, the width of
spectral window is determined by the sampling rate
time-domain signal (1). According to Nyquist theory
resonance lines with frequencies higher than the sam
rate are folded back into the spectral window. To av
spectral folding, NMR spectrometers are usually equip
with digitizers fast enough to cover wideline spectra suc
1H and 2H NMR of solids. However, cases which requir
spectral window wider than the speed of digitizers
exist. Here, a simple method is described to increase
spectral window without the requirement of faster d
tizers.

The problem of an insufficient sampling rate arises in
recent work on detecting satellite transitions of quadrup
nuclei. ForS 5 5

2 spins, the second-order quadrupolar ef
under MAS is much smaller for63

2 7 61
2 satellite transi

tions than the commonly observed central transition; th
fore, satellite transition MAS spectra offer higher spec
resolution (2–5). By coherence transfer from satellite
central transition, the 2D satellite transition magic-an
spinning (STMAS) experiment completely averages
anisotropic second-order quadrupolar effect leading to
tropic NMR spectra of quadrupolar nuclei (6). Becaus
satellite transitions are shifted by the first-order quadrup
effect, their NMR frequencies in powder samples often s
several MHz. Figure 1 shows27Al MAS spectra of a poly
rystalline 9Al2O3 1 2B2O3 sample. The modulation

first-order quadrupolar interaction by MAS yields la
numbers of spinning sidebands for the satellite transit
Clearly a 1 MHz spectral window, the maximum availa
on the Bruker DRX console, is not enough to cover
spinning sidebands and the peaks outside the spectra
dow are folded back.

Spectra with folded peaks are highly sensitive to
timing of data sampling. The phase of folded peaks
pends on the time of the first data point tot 5 0, the
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oment when the magnetization of all peaks is in-ph
7, 8). Because of dead-time by RF pulse, data acquis

cannot start att 5 0 and spectral folding often caus
ispersively shaped peaks and even intensity cancell
etween folded and unfolded peaks. Figure 1 shows
hange of both phase and intensity to spinning sideb
ear two edges of the 1 MHz window by only a 0.5ms shift

to the data sampling.
The problems associated with insufficient sampling

can be solved without the requirement of faster digitiz
Two spectra are acquired under identical conditions u
the maximum digitizing rate except a shift of data samp
by a half dwell-time. New time-domain data can be c
structed by filling the data points alternatively from the
acquired signals. The effective sampling rate of the ge
ated data is twice of the digitizing rate and therefore dou
the spectral window. Figure 1c shows the resulting spec
which has a 2 MHz spectral window using the maximum
MHz digitizing rate of the spectrometer. The increase
spectral window unfolds the satellite transition spinn
sidebands which fold into the original spectral window
Fig. 1a. The unfolded spectrum of Fig. 1c directly shows
spinning sideband powder patterns of the first-order qua
polar interaction excited by an 1ms pulse withgB1/ 2p 5
80 kHz. A further increase in the spectral window w
necessary can be implemented by acquiring multiple sp
with data sampling sequentially shifted by a fraction of
dwell-time.

The described method offers a simple solution for u
wide NMR spectroscopy when available digitizers are
fast enough to cover the required spectral window.
increase in the spectral window avoids the problems
insufficient sampling rate such as spectral overlap, dis
sive lineshape, and peak cancellation for observing
wide NMR spectra such as satellite transitions of qua
polar nuclei.
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me as (a) but the data sampling was delayed by 0.5ms. (c) Unfolded spectru
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